A method is discussed developed to verify commercial printed-circuit boards for a shuttle orbital flight. The Space Acceleration Measurement System Project used this method first with great success. The test sequence is based on early fault detection, desire to test the final assembly, and integration with other verification testing. A component thermal screening test is performed first to force flaws in design, workmanship, parts, processes, and materials into observable failures. Then temperature definition tests are performed that consist of infrared scanning, thermal vacuum testing, and preliminary thermal operational testing. Only the engineering unit is used for temperature definition testing, but the preliminary thermal operational testing is performed on the flight unit after the temperature range has been defined. In the sequence of testing, vibration testing is performed next, but most vibration failures cannot be detected without subsequent temperature cycling. Finally, final assembly testing is performed to simulate the shuttle flight. An abbreviated thermal screening test is performed as a check after the vibration test, and then a complete thermal operational test is performed. The final assembly test finishes up with a burn-in of 100 hours of trouble-free operation. Verification is successful when all components and final assemblies have passed each test satisfactory. This method was very successful in verifying that commercial printed-circuit boards will survive in the shuttle environment.
展开▼